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The random bond Ising model on the Bethe lattice 

D S McKenzie and M A S Saqit 
Department of Physics, Kings College, University of London, Strand, London WC2R 2LS, 
UK 

Received 22 January 1986 

Abstract. This paper studies the random bond Ising model of a spin glass on a tree of 
coordination number q = 3. The model is studied as an example of the method of ring 
recurrence. A set of recursion relations between the moments of the probability distribution 
of the order parameter are produced. It is shown that solutions of the recursion relations 
exist which form an infinite bifurcating set below a critical temperature 7c.  The nature of 
the first such solution is investigated in detail and the critical exponent analogous to p is 
found. 

1. Introduction 

In this paper we study the random bond Ising model of a spin glass as an example of 
a discrete physical system (G, @, U) (McKenzie 1981) using the method of ring 
recurrence (McKenzie 1986). The model is defined by (i) the graph G for which we 
have chosen the q = 3 tree, q being the coordination number or local degree of each 
vertex (the model is easily generalised to arbitrary q ) ,  (ii) the state space @ = A x  9 
where A = c p l V ( G ) l ,  9 = with V(G) and E ( G )  the vertex and edge set of G 
respectively, cp = (1, -1) and CC, is the set of real numbers R (or a subset of R), and 
(iii) the potential given by 

where P = (kT)-' is included in the potential, H E R, J L x , y l  E $ and a,, a), E cp. Each 
J [ x , y l  occurs with probability P(JLx ,y l ) ,  such that there is a mapping 

P :  + + [ O ,  11 P ( z ) = l .  
Z C l L  

Each state w E @ is assigned a probability 

P ( W )  = P ( w l / w 2 ) P ( w d  

where w E A, w2 E 9 and p ( w l / w 2 )  is the conditional probability that the spin state w 1  
occurs, given the distribution of edge interaction energies w 2 .  It is assumed that the 
edge interaction energies are assigned independently so that 

P ( 0 2 )  = n wJ[x,y]). 
[X,.IE E ( G 1 
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We also assume that the conditional probabilities p ( w l / w 2 )  are determined by a 
canonical distribution 

p(w1/w2) = exp[ U ( w , ,  w 2 ) 1 / Z ( w 2 )  

with 

Z ( w 2 )  = c exp[ U ( w , ,  w2) I .  
W I  

This model is the so-called quenched model. It corresponds physically to a collection 
of microcrystallites, each of whch is small on a macroscopic scale but large on the 
scale of atomic bond lengths. Each microcrystallite has a particular assignment of 
edge interaction energies so that the magnetisation of each microcrystallite m is given 
in the usual way by 

l t1(w2) = a  log Z ( 0 2 ) / a H  

but the magnetisation of the system as a whole, M, is an average over all the assignments 
of edge interaction energies, i.e. 

( M )  = c m(wAp(w2) .  
U 2  

The potential of our model is the Sherrington-Kirkpatrick Hamiltonian (1979, dressed 
up slightly differently. A partial solution to our model with p ( z )  chosen as Gaussian 
has been described by Thompson (1982). In the study we produce an exact solution 
for the magnetisation which shows the existence of an infinite number of stable 
non-trivial phases below a critical temperature. Our method does not use the replica 
trick, and as mentioned earlier the solution is easily generalised to arbitrary values of 
q. Furthermore, any properly normalised symmetric function can be chosen for p ( z )  
without affecting the solution, other than to change the values of the critical points. 
For concreteness we later choose p ( z )  to be rectangular, i.e. 

p ( z )  = 1/2a z E [ - a ,  a ]  

but this assumption is not essential to our argument. 

2. Derivation of the recursion relations 

The general method of ring recurrence is described in McKenzie (1986). We consider 
here the calculation of the conditional partition function Z ( w 2 )  for a fixed distribution 
of edge interaction energies. We divide the graph G into rings X :  relative to some 
arbitrary origin, a E V ( G ) .  Here X :  = {x: x E V ( G ) ,  d(x, a )  = s} where d(x, CY) is the 
usual graph metric and s is a positive integer. Let us define recursively the set of edge 
interaction energies %‘ (x~~) ,  x:’+l)), where x!” E X : ,  xjS+l’ E X:+]  and [x:’), x j S + ’ ) ]  E 

E ( G ) ,  by 

%(xi”, X:’+’)) = { J [ x ~ , y ~ l :  [xk, ykl E E ( G ) ,  xk E x : + k ,  y k  E X;++k+l, 

k = 0, 1,2, . . . , xo = x!’), yo = xjS+’)}. 

We now define effective fields T : ’ - ’ )  and 7 Y - I )  by 

A s-l 7(s -1 )  I (z?(xy1) ,  x 3  

= exp(PH + X ~ + ~ ) ) ) T ( ~ ’ ) ( % ( X : ~ ) ,  xP*I))) 
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+ exp(-PH - PJ~xyl),xj~)l)  ~ : S ) ( % ( x j ~ ) ,  x(19+’)))~:S)(%(xj~), xY+’))) 
A T ( s - l )  (2.1) 
s-l 2 xj”’)) 

= exp(PH - ~ J ~ ~ / ~ - ~ I , ~ ~ ~ I ~ ) T ~ ~ ) ( ~ ( X ~ ~ ) ,  x?+’)))T(~S)(%(X~~), xY+” 1) 
+ exp(-PH + P J ~ ~ ~ ~ - ~ ~ , ~ ~ ~ ~ ~ ) T : S ’ ( ~ ( X ~ ~ ) ,  x‘,s+’’)) ~ :S) (%(x j~) ,  xY+l) 1) 

(see figure 1). The functional form of the above equations is independent of the choice 
of vertices XIs-’’, xjs). To simplify the notation let us write [xjS-l), xj”] as e”-”, 
[xS,x(IS+l)] as e:’) and [xj”),xy+”] as e?).  We choose the norm A,-’ by requiring 
~ ( 1 5 - l )  = 1 for all s and define p ( ’ )  = T?’/ T?) to obtain a single recursion relation 

1) 
exp(PH - PJeis-l)) +exp(-PH +PJe(~-l))CL(S)(%(e(lS)))p(S)(%(e:S))) 

exp(PH + P J e ( s - l ) )  + exp(-PH - PJ~is-i))CL‘s)(%(e?)))CL‘s)(%(e:S))) 

pM(%( e”-” 

. (2.2) - - 

The partition function is then given by 

Z ( w 2 )  = ( n n W))  
S > I  e ‘ ” E E , , + ,  

x ( n (ePH + e-dHp( l ) (X (e l” ) )p ‘ l ) ( * (e : ‘ ‘ ) )  (2.3) 

where = {[x, y ] :  x E X : ,  y E X:+l} and the norms are given by 

A,( e‘”) = exp(PH + P J e ( s ) )  + exp( -PH - p J e ( s i ) ~  ( s + l ) ( ~ ( e ( l s + l ) ) ) p L L ( S t l )  (%(e:”+”)) 
It is convenient to introduce new fields p ( ’ )  given by p ” )  = exp( -2p”)). The magnetisa- 
tion per site of the system can be defined by the magnetisation of the central site which 
is given by 

m ( w 2 )  = a  log Z ( w 2 ) / a H  

m(wJ  = tanh(p‘”(%(e‘j”)) + p ( ’ ) ( % ( e y ) ) ) ) .  

where H is the field occurring explicitly in (2.3). In zero field we obtain 

Clearly for any given assignment of the bond strengths the magnetisations might have 
any value. However, the mean magnetisation ( M )  is well defined. This mean value 
is determined by the mean value of the tanh p “ ) ,  which are determined recursively in 
terns of the p ” )  by 

(2.4) tanh p‘””( %( e ( ’ - ’ ) ) )  = tanh P J , ( s - l )  tanh(PH + p ” ’ ( 2 (  e? ’ ) )  + p ( ’ ) (  2( e :” ) ) ) )  

Figure 1. Refer to the text. 
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after some algebra. We transform (2.4) into a recursion relation between the average 
quantities simply by averaging the distribution of bond strengths. We use the notation 

( .  ) = E  ( .  ) p ( w z ) .  
-2 

Since we shall require powers of tanhp, we take the nth power of (2.4) and average 
to obtain 

(tanh" p'"-") = (tanh" PJ tanh"(PH + p ( " ) ( % (  el"')) +p's'(E( e:"'))))  ( 2 . 5 )  

for n =0,  1,2,. . . . Let us now write 

MY) = (tanh"p'"(E(e'"'))) 

and make the important observation that the dependence of M',"' on %(e(")) is removed 
by averaging over all the bond strengths. Equation (2.5) is an implicit relation between 
M',"-" and M i ) ,  m = 0, 1,2,. . .. Because the same functional form of the recursion 
relation holds for all s, we can drop the superscripts on the moments MY), i.e. we 
shall write M'," = M,, for all s 2 1. This is equivalent to considering the bulk properties 
only, neglecting edge effects. We therefore obtain a set of recursion relations written 
formally as 

M,,=f,,({MO,Ml . . . } )  n = 0 , 1 , 2  . . .  
whose solution we consider in the next section. 

3. Solution of recursion relations in zero field 

If we are to obtain a symmetry breaking phase transition we require H = 0. In this, 
the interesting case, the recursion relations become 

(3.1) 

The only contribution to the average of the bond e is the term in tanh pJe in the above. 
Hence averaging over this bond can be separated out. Let us therefore write 

I,, = tanh" p J P ( J )  J E $ (3.2) 
J 

and expand the second term in (3.1) to obtain 

crz r t n  (-l)'n(n + r -  l ) !  
r = O  , = I  ( n - t + r ) ! ( t - r ) ! r !  Mn=In C C MtM n +Z r -  (3.3) 

where we have used the property that 

W h " '  p ( g (  e ,  1) tanh" p(g(ez) ) )  = (tanhm P(%( e, )))(tanhn p ( 2 (  e2))) 
since %(e,) and %(e, )  are disjoint sets. We note that MO= 1, IM,, s 1 and I,, = O  for 
odd n if p ( z )  is a symmetric function of z. The latter obervation requires M, = 0 for 
odd n. Explicit expressions for M2, M4, M6 and Mx are given below: 

MI = 2 I,( Mz - 2 Mi + 3 Mz M4-4M: + 5 M4M6 - 6Mi + . . . ) 
M4 = 2 Id( M4 + 3 M: - 16 M2 M4 + 10 M2 M6 + 30 M: - 80 M4 M6 + . . . ) 
M6 = 2 16( M6 -k 15 M2M4 - 36M2M6 - 60M: + 3 15 M4M6 + 21 MzMx + . . . ) 
Mg = 2 I g (  Mx + 28MzM6 + 35 Mi  - 64M2M8 - 448 M4M6 + . . . ). (3.4) 
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Clearly, expressions (3.3) have a trivial solution M ,  = 0, n = 2 , 4 , 6 ,  . . .. We study 
later perturbations about the trivial solution but first let us consider the M ,  as being 
the moments of a probability distribution function A(x) ,  x E R namely the probability 
of finding a value of (tanhp), which we are treating as the order parameter of the 
system, with a value x. The moment generating function of A ( x )  is 

m 

+ ( t ) = /  A ( x ) e i t x d x  
-m 

= C M ,  ( i t ) " / n !  
n 20 

whose inverse gives 
m 

A ( x ) = ~ /  2T -m +(t)e-"Xdt.  

(3.5) 

In the trivial case the solution set 0 = { M O ,  M 2 ,  M 4 .  . .} becomes Oo = { 1,0,0, . . .} so 
that + ( t )  = 1 and A ( x )  = S(x). Thus, as expected, the probability of finding a value 
of the order parameter different from zero is zero and the system behaves as a 
paramagnet. To study the effect of perturbations about the trivial solution we rewrite 
equations (3.3) formally as 

g,(O)= K,M,-h,(O)=O n = 2 , 4 . .  . (3.7) 

where 

K ,  = (1 - 21,)/21, (3.8) 

and the functions f i n ( @ )  involve only quadratic terms such as MkM,. 
These quadratic terms are a consequence of the local degree q of each vertex being 

three. Similarly the factor 2Z,, which occurs in (3.8), can be generalised to ( q  - l)Z,. 
The stability of the trivial solution Oo = { 1,0,0 . . .} is investigated by forming the 
derivatives 

(ag,/aMk)o=oo = Knank (3.9) 

where a n &  is the Kronecker delta. The matrix of these derivatives is the Hessian H of 
the system. Clearly, along the locus of the trivial solution, H is diagonal and the 
eigenvalues are K,. The trivial solution bifurcates whenever det H = 0, i.e. at each 
point K ,  = O .  Through the I , ,  the K ,  are functions of temperature. For even values 
of n 

Z, = C tanh pJP(J) < n 3 2  
J 

which implies K,-,< K,. Thus the trivial solution is stable for K 2 >  0 and the first 
bifurcation occurs at K2 = 0. The trivial solution is unstable for all K2 < 0. 

The K ,  are implicitly functions of temperature and decrease with decreasing 
temperature. To see this explicitly, let us consider the rectangular distribution for 
P ( z ) ,  P ( z )  = 1/2a, z E [ -a ,  a ] .  Then 

1 "  
2a --(I 

Z, = - tanh" pJ dJ. 
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Figure 2. Schematic diagram of the variation of I, ,  with temperature, showing that each 
bifurcation occurs at increasingly lower temperatures as n increases. 

P -  

Figure 3. Schematic diagram of the set of bifurcating solutions as a function of temperature. 
This is a one-dimensional representation of the solution space of 0. Each branch should 
start in a different plane orthogonal to all the others. 

Using the recursion formula for tanh" z dz (Abramowitz and Stegun 1965) and the 
series expansion for tanh-' z it is easy to deduce that 

Z, = 1 - ( l / p a ) ( v  + u3/3 + . . . + u " - ' / n  - 1) n even (3.10) 

(3.11) 

where v = tanh pa = tanh a / k T  (see figure 2 ) .  Each bifurcation occurs at I,, =;, at 
increasingly lower temperatures as n increases. The set of bifurcating solutions is 
shown schematically as a function of temperature in figure 3. 

4. Nature of the non-trivial solution close to K = O  

In this section we derive an explicit functional form for the stable solution close to 
and just below the first bifurcation point. The method can be applied to the other 
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solutions but we have not attempted this in detail. We return to equations (3.4) which 
can be written as 

K 2 M 2 =  -2M:+3M>M4-4M:+. . 
K 4 M 4 = 3 M i -  16M,M4+ 10M,M6+3M;+. . 
K6M6=15M2M4-36M~M6-60M:+. . . 
Ka M 8  = 28 M,M6 + 35M: + M8 - . . ., 

(4.1) 

Close to the first bifurcation, K 2  is small and K, is large for n > 2. Furthermore, each 
M ,  is close to zero. If we assume K 2  = e = 0 and M 2  = 7 = 0 and retain lowest-order 
terms in 7, we find that M4 is of order q 2 ,  M6 of order q 3  and so on. To lowest order 
in 7, the equation for M 2  gives 

( e + 2 q ) 7  = o  
which has the solutions 77 = 0, corresponding to the trivial solution, or 7 = - ; E .  Since 
the even moments must be positive, this solution is not physical for E > 0, i.e. above 
the critical temperature, T,, but gives the stable solution below T,, i.e. for E < O .  To 
lowest order in 7, the higher moments are given by M 4 = 3 v 2 / K 4 ,  M 6 =  15V3/K6, 
M a  = 63v4/  K, ,  . . . , or in general, 

M ,  = (2,-'  - 1 )  7"12/ K, n > 2,  n even. (4.2) 

To obtain a complete functional form for M ,  in terms of n, we require an estimate 
of the K,. To do this we return to (3.11) from which we can estimate 

U n + l  1 
I,  = 

p o ( 1 - u ' )  ( n + l ) '  

This is in fact an upper bound to I,. We therefore estimate an asymptotic form for 
K,, valid for large n, namely 

where C is a smooth function of temperature at K 2  = 0 and is independent of n. We 
therefore obtain 

M,, = D ( 2 J G u ) " / (  n + 1 )  for n 3 4  

where 7 = --+e > 0. The moment generating function (3 .5 )  is given by 

n even 

(4.3) 

In (4.3) we have approximated terms which are either constant or of order 7 whose 
contribution to the probability distribution A ( x )  is minor. Inverting (4.3) using (3.6) 
we obtain 
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The distribution is correctly normalised by putting D = 1. Values of D # 1 arise from 
the approximations made in the above derivation. Thus the probability of finding a 
non-zero value of the order parameter is uniform below the critical temperature. 
Moreover, the possible values increase as E ” ~ ,  below T,, which thus defines the analogue 
of the critical exponent p for this model. We must emphasise however that the analysis 
given here is only valid for small values of E .  

5. Conclusion 

We have studied the random bond Ising model on the q = 3 tree. The model has been 
solved using the method of ring recurrence (McKenzie 1986). We have shown the 
existence of a trivial solution which corresponds to paramagnetic behaviour above a 
critical point T,, and which becomes unstable below the critical point. There exists 
an infinite bifurcation set below T,, and one obtains a non-trivial solution from each 
bifurcation. The nature of the non-trivial solution occurring at the highest temperature 
is investigated in detail and a critical exponent /3 = f is deduced. The model is very 
easily generalised to any symmetric distribution of bond energies and to trees of 
arbitrary coordination numbers. 
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